ParameterSpacePartitions.Options — TypeOptions(;
radius = .1,
bounds,
n_iters,
init_parms,
parallel = false,
adapt_radius! = adapt!,
kwargs...
)An object that holds configuration options for the MCMC sampler.
Fields
parallel=false: runs model on threads if true. A speed up is observed if the evaluation
time of the function is 1 ms or greater.
radius = .10: the initial radius length for each chainbounds: a vector of tuples representing (lowerbound, upperbound) for each dimension in
the parameter space
x_range: the range of allowable values for each parametern_iters: number of iterations to performp_eval: the function that evalues the model and pattern functionsadapt_radius!=adapt!: a function in the form offunc(chain, options; kwargs...)that adapts
the radius.
init_parms: a vector of starting points, such as [[.3,.4],[.3,.5]] in the 2 dimensional case.n_dims: number of dimensions in parameter spaceparm_names: a vector of symbols corresponding to parameter names. The default is [:p1,:p2,..:pn]add_iters: the number of trials to run after merging chains with the same pattern located in the same region
ParameterSpacePartitions.adapt! — Methodadapt!(
chain,
options;
t_rate = .20,
kwargs...
)Iteratively adapts the radius to achieve a target acceptance rate. The radius is adjusted according to the following factor c:
c = exp(λ * d_rate)where λ is the adaption rate, and d_rate is the difference between the acceptance rate and target acceptance rate.
Arguments
chain: a chain for exploring the parameter spaceoptions: a set of options for configuring the algorithm
Keyword Arguments
t_rate = .20: target acceptance ratekwargs...: keyword arguments that are not processed
ParameterSpacePartitions.estimate_volume — Methodestimate_volume(
model,
p_fun,
points,
target,
bounds,
args...;
n_sim = 10_000,
kwargs...
)Estimate volume of region with an eillipsoid and hit or miss bias adjustment.
Arguments
model: a model function that returns predictions given a vector of parametersp_fun: a function that that evaluates the qualitative data patternpoints: a p x n matrix of sampled points where p is the number of parameters and n is the number of samplestarget: the target pattern associated with thepointsbounds: a vector of tuples representing (lowerbound, upperbound) for each dimension inargs...: arguments passed tomodelandp_fun
Keywords
n_sim=10_000: the number of samples for hit or miss bias adjustmentkwargs...: additional keyword arguments passed tomodelorp_fun
ParameterSpacePartitions.find_partitions — Methodfind_partitions(model, p_fun, options, args...; show_timer=false, kwargs...)Performs parameter space partitioning.
Arguments
model: a model function that returns predictions given a vector of parametersp_fun: a function that that evaluates the qualitative data patternoptions: a set of options for configuring the algorithmargs...: arguments passed tomodelandp_fun
Keywords
show_timer=false: displays timer and progress bar if truekwargs...: keyword arguments passed tomodelandp_fun