QuantumOrderEffectModels.QOEM
— TypeQOEM{T<:Real,V<:AbstractVector{T}} <: AbstractQOEM
A model object for a quantum model for medical diagnosis.
Basis vectors
A person's cognitive state Ψ is represented in a 4D belief space where basis vectors correspond to hypotheses and evidence states:
- disease present and positive evidence for disease
- disease present and negative evidence for disease
- disease absent and positive evidence for disease
- disease absent and negative evidence for disease
Fields
Ψ::V
: initial state vector (superposition)γₕ::T
: rotation for positive evidence from medical historyγₗ::T
: rotation for negative evidence from laboratory testσ::T
: the standard deviation of probability judgments
Example
Ψ = [√(.676 / 2),√(.676 / 2),√(.324 / 2),√(.324 / 2)]
γₕ = 4.4045 / √(.5)
γₗ = 0.3306 / √(.5)
σ = .10
model = QOEM(;Ψ, γₕ, γₗ, σ)
predict(model)
References
Trueblood, J. S., & Busemeyer, J. R. (2011). A quantum probability account of order effects in inference. Cognitive science, 35(8), 1518-1552.
Base.rand
— Methodrand(model::AbstractQOEM, n::Int; t = 1, r = .05)
Generates simulated data for the following conditions:
Order 1
- Pr(disease)
- Pr(disease | lab test)
- Pr(disease | lab test, medical history)
Order 2
- Pr(disease)
- Pr(disease | medical history)
- Pr(disease | medical history, lab test)
Arguments
model::AbstractQOEM
: a model object for a quantum order effect modeln
: the number of trials per condition
Keywords
t = 1
: time of decision
Example
using QuantumOrderEffectModels
Ψ = @. √([.35,.35,.15,.15])
γₕ = 2
γₗ = .5
σ = .05
n_trials = 100
model = QOEM(;Ψ, γₕ, γₗ, σ)
data = rand(model, n_trials)
Distributions.logpdf
— Methodlogpdf(model::AbstractQOEM, n::Int, n_d::Vector{Int}; t = 1, r = .05)
Returns the joint log density given data for the following conditions:
Order 1
- Pr(disease)
- Pr(disease | lab test)
- Pr(disease | lab test, medical history)
Order 2
- Pr(disease)
- Pr(disease | medical history)
- Pr(disease | medical history, lab test)
Arguments
model::AbstractQOEM
: a model object for a quantum order effect modeln
: the number of trials per conditionn_d
: the number of defections in each condition
Keywords
- `t = 1: time of decision
Example
Ψ = @. √([.35,.35,.15,.15])
γₕ = 2
γₗ = .5
σ = .05
n_trials = 100
model = QOEM(;Ψ, γₕ, γₗ, σ)
data = rand(model, n_trials)
logpdf(model, data)
Distributions.pdf
— Methodlogpdf(model::AbstractQOEM, n::Int, n_d::Vector{Int}; t = 1, r = .05)
Returns the joint log density given data for the following conditions:
Order 1
- Pr(disease)
- Pr(disease | lab test)
- Pr(disease | lab test, medical history)
Order 2
- Pr(disease)
- Pr(disease | medical history)
- Pr(disease | medical history, lab test)
Arguments
model::AbstractQOEM
: a model object for a quantum order effect modeln
: the number of trials per conditionn_d
: the number of defections in each condition
Keywords
- `t = 1: time of decision
Example
using QuantumOrderEffectModels
Ψ = @. √([.35,.35,.15,.15])
γₕ = 2
γₗ = .5
σ = .05
n_trials = 100
model = QOEM(;Ψ, γₕ, γₗ, σ)
data = rand(model, n_trials)
logpdf(model, data)
QuantumOrderEffectModels.predict
— Methodpredict(model::AbstractQOEM; t = 1)
Returns predicted response probability for the following conditions:
Arguments
model::AbstractQOEM
Keywords
t = 1
: time of decision
Output
The output is a vector of predictions corresponding to the following conditions:
Order 1
- Pr(disease)
- Pr(disease | lab test)
- Pr(disease | lab test, medical history)
Order 2
- Pr(disease)
- Pr(disease | medical history)
- Pr(disease | medical history, lab test)
Example
using QuantumOrderEffectModels
Ψ = @. √([.35,.35,.15,.15])
γₕ = 2
γₗ = .5
σ = .05
model = QOEM(;Ψ, γₕ, γₗ, σ)
predict(model)