Poisson Race
The Poisson race model is one of the first sequential sampling models, with origins dating back to 1962. In this model, evidence accumulates in discrete steps until the first accumulator reaches a threshold. The time between increments follows an exponential distribution. The first passage time follows a gamma distribution because it is the sum of exponential random variables.
Example
In this example, we will demonstrate how to use the Poisson race model in a generic two alternative forced choice task.
Load Packages
The first step is to load the required packages.
using SequentialSamplingModels
using Plots
using Random
Random.seed!(65)
Random.TaskLocalRNG()
Create Model Object
In the code below, we will define parameters for the Poisson race and create a model object to store the parameter values.
Mean processing time
The parameter $\nu$ represents the mean processing of each count. Note that $\nu = \frac{1}{\lambda}$, where $\lambda$ is the rate parameter.
ν = [.04, .05]
2-element Vector{Float64}:
0.04
0.05
Threshold
The parameter $\alpha$ is a vector of thresholds. Each threshold is an integer because it represents a discrete count.
α = [4,4]
2-element Vector{Int64}:
4
4
Non-Decision Time
Non-decision time is an additive constant representing encoding and motor response time.
τ = 0.30
0.3
Poisson race Constructor
Now that values have been asigned to the parameters, we will pass them to LNR
to generate the model object.
dist = PoissonRace(;ν, α, τ)
PoissonRace
┌───────────┬──────────────┐
│ Parameter │ Value │
├───────────┼──────────────┤
│ ν │ [0.04, 0.05] │
│ α │ [4, 4] │
│ τ │ 0.30 │
└───────────┴──────────────┘
Simulate Model
Now that the model is defined, we will generate $10,000$ choices and reaction times using rand
.
choices,rts = rand(dist, 10_000)
(choice = [2, 1, 1, 2, 1, 1, 1, 2, 1, 1 … 2, 2, 2, 2, 1, 1, 1, 1, 2, 1], rt = [0.4559797144683182, 0.3749697591685416, 0.5007783307856986, 0.3893184263316646, 0.4104218262965172, 0.35125354769070133, 0.4843491606953234, 0.36392895777328466, 0.47561893944673495, 0.4805281719975132 … 0.4242886276266836, 0.4061082101636676, 0.4108428594240965, 0.34169826153402333, 0.4574731326007962, 0.3548809891926727, 0.3957452096859603, 0.39505325884732145, 0.37258694097526246, 0.5012963602140261])
Compute PDF
The PDF for each observation can be computed as follows:
pdf.(dist, choices, rts)
10000-element Vector{Float64}:
2.0266672914930792
3.934066370450477
1.4988000652286813
2.58811252177243
4.533911107644525
2.3838465959607738
2.019447097207539
1.7874940526937415
2.3338681039986757
2.1541656901764754
⋮
2.764419836870549
2.7631629106085747
0.821498910826969
3.0444070174661584
2.6592798918606695
4.549956046405041
4.542050241412011
2.122882523282452
1.484021302292923
Compute Log PDF
Similarly, the log PDF for each observation can be computed as follows:
logpdf.(dist, choices, rts)
10000-element Vector{Float64}:
0.7063927156124248
1.3696735908084068
0.40466483145799836
0.9509288539672379
1.511584946168512
0.8687153998008347
0.7028237596928365
0.5808146684161503
0.8475270215557812
0.7674034978633449
⋮
1.0168307890415615
1.016376005697355
-0.19662466734018
1.1133061424492254
0.9780553687974393
1.5151175727854393
1.5133785051395843
0.752774845948642
0.3947554992869886
Compute Choice Probability
The choice probability $\Pr(C=c)$ is computed by passing the model and choice index to cdf
along with a large value for time as the second argument.
cdf(dist, 1, Inf)
NaN
Plot Simulation
The code below overlays the PDF on reaction time histograms for each option.
histogram(dist)
plot!(dist; t_range=range(.301, 1, length=100))
References
LaBerge, D. A. (1962). A recruitment model of simple behavior. Psychometrika, 27, 375-395.