Hierarchical Models
In this example, we will fit a model with random factors and estimate individual parameters. This tutorial will build on the previous ones, so make sure you have followed them first. Let's start by loading all the packages and setting a reproducible seed.
using Turing
using SequentialSamplingModels
using Random
using LinearAlgebra
using Distributions
using DataFrames
using StatsPlots
using StatsModels
using CSV
using Optim
Random.seed!(6)
Generate Data
We will use the LBA distribution to simulate data for 10 participants in two conditions with 100 trials per condition (repeated measures design). The drift rates for condition A are sampled from normal distributions, and the drift rates for condition B are set by sampling a departure from (i.e., the difference with) condition A. In other words, each participant has different drift rates for condition A (the intercept, i.e., the baseline condition) and a different "effect" magnitude of condition B (the offset from condition A to condition B).
# Generate data with different drifts for two conditions A vs. B
df = DataFrame()
params = DataFrame()
for participant in 1:10
# Intercept (condition A)
drifts = [rand(Normal(1.5, 0.2)), rand(Normal(0.5, 0.1))]
param = join(round.(drifts, digits=2), ", ") # Format and save params
df1 = DataFrame(rand(LBA(ν=drifts, A=0.5, k=0.5, τ=0.3), 100))
df1[!, :condition] = repeat(["A"], nrow(df1))
df1[!, :participant] = repeat([participant], nrow(df1))
# Effect of condition B
drifts2 = [rand(Normal(0.5, 0.15)), rand(Normal(0.5, 0.05))]
param = [param, join(round.(drifts2, digits=2), ", ")]
df2 = DataFrame(rand(LBA(ν=drifts .+ drifts2, A=0.5, k=0.5, τ=0.3), 100))
df2[!, :condition] = repeat(["B"], nrow(df2))
df2[!, :participant] = repeat([participant], nrow(df1))
# Assemble and store parameters (to compare with estimation)
df = vcat(df, df1, df2)
params = vcat(params, DataFrame(permutedims(param), [:drift_intercept, :drift_condition]))
end
We can visualize the individual distributions for the two type of responses and for the conditions (condition A in red and B in blue).
density(layout=(2, 1), ylims=(0, 5), xlims=(0, 3), legend=false)
for p in unique(df.participant)
for (i, cond) in enumerate(["A", "B"])
density!(df.rt[(df.choice.==1).&(df.condition.==cond).&(df.participant.==p)],
subplot=1, color=[:blue, :red][i], title="Choice = 1")
density!(df.rt[(df.choice.==2).&(df.condition.==cond).&(df.participant.==p)],
subplot=2, color=[:blue, :red][i], title="Choice = 2", xlabel="Reaction Time (s)")
end
end
plot!()
Model Specification
First, we will transform our predictor data into an model matrix. This essentially transform our favor column with "A" and "B" to a binary vector.
We will also transform our outcome data (RTs and choice) into a list of tuples (see this example for more explanation).
# Format input data
f = @formula(rt ~ 1 + condition)
f = apply_schema(f, schema(f, df))
_, predictors = coefnames(f)
X = modelmatrix(f, df)
# Format the data to match the input type
data = [(choice=df.choice[i], rt=df.rt[i]) for i in 1:nrow(df)]
Now, the model is a bit more complex:
@model function model_lba(data; min_rt=0.2, condition=nothing, participant=nothing)
# Priors for auxiliary parameters
A ~ truncated(Normal(0.8, 0.4), 0.0, Inf)
k ~ truncated(Normal(0.2, 0.2), 0.0, Inf)
tau ~ Uniform(0.0, min_rt)
# Priors for population-level coefficients
drift_intercept_1 ~ Normal(0, 1)
drift_intercept_2 ~ Normal(0, 1)
drift_condition_1 ~ Normal(0, 1)
drift_condition_2 ~ Normal(0, 1)
# Prior for random intercepts (requires thoughtful specification)
# Group-level intercepts' SD
drift_intercept_random_sd ~ truncated(Cauchy(0, 0.1), 0.0, Inf)
# Group-level intercepts
drift_intercept_random_1 ~ filldist(
Normal(0, drift_intercept_random_sd),
length(unique(participant))
)
drift_intercept_random_2 ~ filldist(
Normal(0, drift_intercept_random_sd),
length(unique(participant))
)
for i in 1:length(data)
# Formula for intercept
drifts_intercept_1 = drift_intercept_1 .+ drift_intercept_random_1[participant[i]]
drifts_intercept_2 = drift_intercept_2 .+ drift_intercept_random_2[participant[i]]
# Combine with condition
drifts_1 = drift_intercept_1 + drift_condition_1 * condition[i]
drifts_2 = drift_intercept_2 + drift_condition_2 * condition[i]
data[i] ~ LBA(; τ=tau, A=A, k=k, ν=[drifts_1, drifts_2])
end
end
Note that for now, these types of model are very slow to run in Turing.